Robototehnika-info.ru

Робототехника Инфо
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Земистый цемент: сырье, производство, свойства и применение в строительстве

48.Глиноземистый цемент: сырье, производство, свойства и применение в строительстве.

Глиноземистый цемент должен иметь тонкость помола, характеризуемую остатком на сите № 008 не более 10 %, Марки глиноземистого цемента, определяемые по ГОСТ 310.4—81, через 3 сут 400, 500, 600. Сроки схватывания глиноземистого цемента: начало—не ранее 30 мин, конец — не позднее 12 ч.

Бетоны на глиноземистом цементе морозостойки и более стойки по сравнению с портландцементом против выщелачивающей коррозии, а также к растворам сульфата кальция и магния, морской и болотной воде, растворам сахара, животным и растительным маслам. Однако глиноземистый цемент быстро разрушается даже слабыми растворами солей аммония и щелочей. Его нельзя применять в щелочных средах и смешивать с известью или портландцементом.

Учитывая дефицитность сырья (бокситов,) и значительную стоимость глиноземистого цемента, его выпускают в сравнительно небольших количествах (менее I % от общего выпуска цемента), а применяют при возведении бетонных конструкций, которые необходимо быстро ввести в эксплуатацию, для срочных аварийных и ремонтных работ, а также для тампонирования нефтяных и газовых скважин, футеровки шахтных колодцев и туннелей и т. п.

На основе глиноземистого цемента в смеси с жаростойкими заполнителями изготовляют бетоны, которые хорошо сопротивляются действию высоких температур (1000°С и выше). Глиноземистый цемент используют также для получения расширяющихся цементов.

Глиноземистый цемент — быстротвердеющее, нормально схватывающееся вяжущее вещество, получаемое тонким измельчением обожженной до сплавления (t =1500-1600° С) или спекания (t=1250° С) смеси бокситов и извести (известняка) с преобладанием в готовом продукте алюминатов кальция.

Основным минералом глиноземистого цемента является однокальциевый алюминат СаО*Аl203. Для производства глиноземистого цемента способом спекания тонкоизмельченная и тщательно перемешанная сырьевая смесь боксита и известняка обжигается в шахтных или вращающихся печах.

Этот цемент выпускается трех марок 400, 500 и 600. При твердении глиноземистого цемента в короткий промежуток времени выделяется большое количество теплоты.(376 кДж/кг). Это приводит к значительному повышению температуры камня и может быть полезным при ведении работ в зимнее. Однако сильное повышение температуры в бетонных массивах вызывает трещинообразование. Плотность глиноземистого цемента 3100—3300 кг/м3, насыпная объемная масса в рыхлом состоянии 1000—1300 кг/м3.

Бетоны на глиноземистом цементе водостойки, воздухостойки, морозостойки. Применяется глиноземистый цемент при скоростном строительстве, аварийных работах, зимнем бетонировании. Высокая жаростойкость глиноземистого цемента, позволяет изготавливать бетоны, успешно работающие при t до 1700°С. В минеральном составе клинкера глиноземистых цементов преобладает однокальциевый алюминат (20- 30%), определяющий основные свойства вяжущего: СаО• Аl2О3 (СА) Кроме того, в нем присутствуют алюминаты СА2, С12А7; двухкальциевый силикат C2S

Основные сырьевые материалы для производства глиноземистого цемента

Согласно ГОСТ 969-91 содержание глинозема А12О3 в глиноземистом цементе (ГЦ) должно быть не менее 35 %. Наряду с глиноземистыми цементами выпускают цементы высокоглиноземистые (ВГЦ) с содержанием А12О3 60—80 %. Так в цементе ВГЦ I должно быть не менее 60 %, в цементе ВГЦ II – не менее 70 %. а в цементе ВГЦ III – не менее 80 % А12О3. Влияние отдельных оксидов на технологию получения и свойства глиноземистого цемента сводится к следующему. А12О3 обеспечивает легкоплавкость сырьевой смеси и образование алюминатов кальция, определяющих строительно-технические свойства глиноземистого цемента. СаО входит в состав всех основных минералов цемента. По содержанию СаО цементы разделяют на высокоизвестковые (СаО более 40 %) и низкоизвестковые (СаО менее 40 %). SiO2 и Fe2O3 в целом нежелательные составляющие сырьевой смеси, однако в небольших количествах (SiO2 4—5 %, Fe2O3 5—10 %) они способствуют более равномерному плавлению шихты и улучшению процесса минералообразования. MgO уменьшает температуру плавления сырьевой смеси и вязкость расплавов, однако избыток MgO (более 2 %) снижает активность клинкера. Щелочи также снижают температуру плавления сырьевой смеси, но отрицательно влияют на качество цемента. Минералогический состав глиноземистого цемента зависит от состава исходного сырья и технологии производства. Важнейший минерал глиноземистого цемента — моноалюминат кальция СаО-А12О3, который обеспечивает при нормальных сроках схватывания быстрое твердение цемента. Однокальциевый алюминат может образовываться как по реакциям в твердой фазе, так и путем кристаллизации из расплава. Условия обжига и охлаждения определяют форму и размер кристаллов СА.

В состав глиноземистого цемента входят и другие низкоосновные алюминаты: 5СаО-ЗА12О3, 12СаО-7А12О3, СаО-2А12О3. C5A3 и C12A7 взаимодействуют с водой очень активно и схватываются уже в течение нескольких минут; СА2 гидратируется менее энергично. Присутствие в сырье кремнезема и оксида железа обусловливает образование в клинкере глиноземистого цемента белита и твердых растворов алюмоферритов. Гидравлическая активность фаз, содержащих оксид железа, значительно ниже активности чистых кальциевых алюминатов. Двухкальциевый силикат — фактически инертная составляющая глиноземистого цемента, поскольку в сроки его твердения гидратации C2S не происходит.

Читайте так же:
Промыть глаза от пыли цементной

В качестве основного сырья для изготовления глиноземистого цемента используют бокситы и известняки (или известь). Боксит представляет собой гидроксид алюминия с примесями SiO2, Fe2O3, ТiO2, СаО и MgO. По количеству связанной воды различают бокситы, приближающиеся к диаспорам (А12О3-Н2О) и к гидроаргиллитам (А12О3-ЗН2О). Плотность боксита 2800—3500 кг/м3 в зависимости от содержания железа. Пригодность бокситов для производства глиноземистого цемента оценивают по величине их кремниевого модуля, представляющего отношение содержания А12О3 к SiO2 (по массе). Этот показатель должен быть не менее 5—6.

К известняку, используемому для производства глиноземистого цемента, не предъявляется каких-либо особых требований, кроме ограничения содержания SiO2 (до 1,5 %) и MgO (до 2 %). Особенно нежелательно присутствие в сырье кремнезема, который при взаимодействии с СаО и А12О3 образует геленит C2AS. На каждый процент кремнезема получается 4,5 % геленита. Поскольку геленит в кристаллическом виде гидравлической активностью не обладает, то значительная часть глинозема связывается в инертном соединении.

Для получения глиноземистого цемента используются способ спекания и способ плавления. Выбор способа в основном зависит от химического состава бокситов.

Способом спекания получают глиноземистый цемент во вращающихся или шахтных печах. Предварительно исходные сырьевые материалы высушивают, подвергают совместному тонкому измельчению, тщательно гомогенизируют и подают на обжиг в виде порошка или гранул. Сырьевая смесь спекается в печи в клинкер, который после охлаждения измельчается в тонкий порошок.

Ведение обжига клинкера глиноземистого цемента затрудняется недостаточным интервалом между температурами спекания и плавления сырьевой смеси, что вызывает образование колец, сваров и приваров. Кроме того, при спекании все нелетучие соединения, входящие в состав сырья, переходят в цемент. Поэтому получение глиноземистого цемента способом спекания требует чистого сырья с небольшим содержанием кремнезема (до 8 %) и оксидов железа (до 10 %). Несмотря на меньший расход топлива и более легкую размалываемость получаемого этим способом клинкера, способ спекания менее распространен.

Способ плавления при производстве глиноземистого цемента получил большее распространение, что объясняется сравнительно низкими температурами плавления сырьевых смесей (1380—1600 °С), возможностью использования грубомолотой сырьевой смеси с большим количеством примесей, которые частично при обжиге удаляются. Плавление шихты осуществляют в восстановительной и окислительной атмосфере в вагранках, доменных печах, электрических дуговых печах и конверторах.

В электродуговые печи загружают известь, прокаленныё до полного удаления воды бокситы, железную руду, металлический лом и кокс. При плавке оксиды железа и кремния, присутствующие в сырье, восстанавливаются и, реагируя между собой, образуют ферросилиций. В результате при использовании боксита, содержащего 15— 17 % SiO2, в цементе количество кремнезема снижается до 6—8 %. Так как плотность ферросилиция 6,5 г/см3, а расплавленного цемента 3 г/см3, расплав ферросилиция, осаждаясь, отделяется от расплава цемента. Сливая раздельно верхний и нижний слои расплава, получают два продукта — клинкер глиноземистого цемента и ферросилиций, используемый в металлургической промышленности. Плавка идет при 1800—2000 °С, апериодический выпуск расплава из печи в изложницы — при 1550—1650 °С. Охлажденный клинкер поступает на дробление и помол. Плавка в электрических печах обеспечивает получение глиноземистого цемента высокого качества, но требует большого расхода электроэнергии.

Способ доменной плавки чугуна и высокоглиноземистого шлака за рубежом называют «русским способом производства глиноземистого цемента». Сырьевую смесь, состоящую из железистого боксита, известняка, металлического лома и кокса, послойно загружают в печь. В результате доменного процесса получают из руды расплавленный чугун, а в виде шлака — расплав глиноземистого клинкера. Температура выпускаемого из домны расплава глиноземистого шлака 1600—1700 °С, а чугуна — 1450—1500 °С. Расплавленный глиноземистый шлак разливают в изложницы, где он медленно охлаждается и кристаллизуется. Количество получаемого чугуна примерно равно количеству клинкера. Бокситы, используемые при доменной плавке, могут содержать неограниченное количество Fe2O3, так как железо восстанавливается и переходит в состав чугуна. Однако SiO2 при доменной плавке восстанавливается в небольшой степени, поэтому требуются применение малокремнеземистого боксита и строгий контроль химического состава обжигаемой шихты. Обжиг в доменной печи очень экономичен, так как плавление сырья происходит за счет того же топлива, которое необходимо для выплавки чугуна.

В процессе нагревания сырьевой шихты при 450— 1000 °С удаляется вода из бокситов, при 900 °С разлагается СаСОз, а при 1000—1100 °С происходит распад глинистых минералов. Взаимодействие между СаО и А12О3 начинается при 800—900 °С с образованием в качестве первичной фазы однокальциевого алюмината. При 1000— 1100 °С образуется СА2, а выше 1200 °С — С5А3 и С3А. Образование алюмоферритов происходит при температуре более 1200 °С.

Читайте так же:
Срок схватывания цементного теста

Микроструктура и качество плавленого клинкера определяются режимом охлаждения. При медленном охлаждении кристаллы растут в благоприятных условиях и достигают больших размеров. Быстроохлажденный клинкер содержит значительное количество не успевшей закристаллизоваться стекловидной фазы. Характерная для глиноземистых цементов высокая начальная прочность проявляется только у цементов, изготовленных из равномерно закристаллизованных, т. е. медленно охлажденных клинкеров.

Плавленый глиноземистый клинкер отличается высокой твердостью, поэтому необходимо его предварительное двухстадийное дробление в мощных дробилках. Продукт дробления подвергают электромагнитной сепарации для отделения металлического железа и ферросилиция.

Помол дробленого глиноземистого клинкера производят в шаровых мельницах. Для интенсификации помола применяют углеродсодержащие вещества (угольную мелочь, сажу). Вследствие большого износа мелющих тел при помоле глиноземистого цемента необходимо чаще, чем при помоле портландцемента, производить догрузку и перегрузку мельниц. Расход электроэнергии на помол плавленых клинкеров примерно вдвое выше, чем на помол цементов, полученных способом спекания. Размол производят до остатка на сите № 008 не более 10 %.

Глиноземистый цемент, производство и применение глиноземистого цемента.

Глиноземистый цемент (ГОСТ 969-77) – быстротвердеющее гидравлическое вяжущее вещество, являющееся продуктом тонкого помола обожженной до сплавления или спекания сырьевой смеси, богатой глиноземом и окисью кальция. Глиноземистый цемент содержит преимущественно низкоосновные алюминаты кальция. Глиноземистый цемент быстротвердеющий, но не быстросхватывающийся.

Начало его схватывания должно наступать не ранее 45 минут, а конец – не позднее 12 часов. Вводя различные добавки в глиноземистый цемент, регулируют сроки его схватывания. При введении гидратов окиси кальция и натрия, карбоната натрия, двуугекислой соды, сульфатов натрия, кальция и железа, цемента схватывания глиноземистого цемента ускоряют, а при введении хлористых натрия, калия, бария, азотнокислого натрия, соляной кислоты, глицирина, сахара, уксуснокислого натрия, буры – схватывание замедляют. При твердении глиноземистого цемента в короткий промежуток времени выделяется большое количество тепла (за первые сутки 70-80% всего тепла), что приводит к значительному повышению температуры в первые сроки твердения. Это свойство цемента используют при низких температурах для зимних работ. Глиноземистый цемент выпускают марок 400, 500 и 600.

Прочность глиноземистого цемента характеризуется спадами и подъемами в различные периоды твердения. Чем быстрее идет процесс гидратации, тем чаще наблюдается падение прочности. Бетон на глиноземистом цементе более плотный и водонепроницаемый, а коррозийная стойкость выше, чем бетона на цементе. Бетоны и растворы на глиноземистом цементе достаточно морозостойки. Несмотря на хороший показатели свойств, глиноземистый цемент не получил такого широкого распространения, как цемент, так как сырья для его производства значительно меньше и стоимость намного выше.

Глиноземистый цемент применяют для получения быстротвердеющих строительных и жаростойких растворов и бетонов, используемых при скоростном строительстве, аварийных работах, зимнем бетонировании, при строительстве сооружений, подвергающихся действию минерализированных вод и сернистых газов.

Глиноземистый цемент — быстротвердеющее гидравлическое вяжущее вещество, являющееся продуктом тонкого помола обожженной до сплавления или спекания сырьевой смеси, состоящей из бокситов и извести (или известняка). Состав смеси таков, что в готовом продукте преобладают низко-основные алюминаты кальция.

Химический состав глиноземистого цемента следующий: А l 2О3 — 30-50%; CaO — 35-45%; SiO2 — 5-15%; Fе2O3 – 5-15 %.

Минералогический его состав может существенно меняться в зависимости от химического состава сырьевой смеси и способа производства.

Наиболее важными соединениями являются алюминаты кальция: СаО*А l 2О3(СА), 5СаО*3А l 2О35 A З) и СаО*2АI2О3(СА2).

В глиноземистом цементе всегда присутствует одно кальциевый алюминат. Он является основным его компонентом. Глиноземистые цементы делятся на высокоизвестковые, содержащие более 40% СаО, и малоизвестковые, в которых СаО менее 40%. В высокоизвестковых цементах наряду с однокальциевым алюминатом присутствует С5А3, а в малоизвестковых – С A 2.

Однокальциевый алюминат может образоваться в результате реакций в твердой фазе или путем кристаллизации из расплава. В зависимости от состава и условий образования СА форма его кристаллов бывает различной (призматическая, дендритная, скелетная). Однокальциевый алюминат часто образует твердые растворы с ферритом, хромитом и другими составляющими систему компонентами. Это соединение в чистом виде характеризуется нормальными сроками схватывания и высокой прочностью В ранние сроки твердения, не падающей и в дальнейшем. Пятикальциевый трехаалюминат встречается в виде двух модификаций: устойчивой А-формы и неустойчивой А-формы. Состав этого минерала выражается также формулой 12СаО*7АI2З(СI2А7). В А-С5А3 могут растворяться различные окислы глиноземистого цемента. Ряд исследователей считают, что в действительности он является соединением 6СаО*4Аl2О3* F еО*Si O 2, в котором F еО может замещаться MgO, а Si O 2 — Тi O 2. В глиноземистых цементах С5А3 встречается главным образом в устойчивой модификации. В чистом виде С5А3 быстро ,схватывается и дает в первые сроки твердения довольно высокую прочность, понижающуюся, однако, в дальнейшем.

Читайте так же:
Полиуретан цементные наливные полы

Однокальциевый двухалюминат также встречается в виде двух модификаций: устойчивой и неустойчивой. Состав этого минерала выражали ранее формулой 3СаО*5Аl2О33А5). В глиноземистом цементе обнаружена устойчивая форма СА2. Она образует крупные игольчатые призматические кристаллы. Отдельно взятый СА2 гидратируется и схватывается медленнее других алюминатов кальция, но отличается сравнительно высокой прочностью через длительное время.

В глиноземистом цементе содержатся также 2Са O * Si O 2 и геленит — 2СаО*Si O 2*АI2О3. Двухкальциевый силикат обычно встречается в зернах круглой формы. Часто наблюдаются двойники. Отличаясь медленным твердением, двухкальциевый силикат понижает прочность глиноземистых цементов в первые сроки. Геленит кристаллизуется в виде таблиц, призм; чаще он дает в глиноземистых цементах крестообразные формы или тонкоструктурные прорастания с СА. Геленит — практически неактивный компонент глиноземистого цемента. В насыщенном известково-гипсовом растворе его активность несколько повышается. Вяжущие свойства геленита в стеклообразном и мелкокристаллическом состоянии выше, чем в крупнокристаллическом. На образование геленита затрачивается глинозем. Это уменьшает содержание наиболее активных компонентов — алюминатов кальция. Таким образом, следует стремиться к тому, чтобы в глиноземистых цементах содержалось возможно меньше Si O 2. Присутствие лишь небольшого его количества (до 4-5%) действует благоприятно, по-видимому, из-за способности СА растворять такое количество в своей кристаллической решетке.

Железосодержащие составляющие встречаются в глиноземистых цементах в виде твердых растворов в пределах составов С6А2 F -С2 F . Возможно также присутствие 2СаО*Fе2 O 3, СаО*Fе2О3, Fе3 O 4 и F еО.

Наличие MgO в глиноземистом цементе вызывает образование магнезиальной шпинели — MgO . АI2О3. Она может также присутствовать в виде периклаза (MgO), окерманита (2СаО* MgO*2Si O 2) и четверного соединения 6C a O*4Аl2 O 3*MgO*Si O 2. Связывая глинозем и малоактивные соединения, окись магния ухудшает свойства глиноземистого цемента.

В бокситах содержиться некоторое количество окиси титана, которая может образовывать первскит — CaO*TiO2, также не гидратирующийся при воздействии воды. В глиноземистых цементах возможно присутствие и других компонентов, количество которых, однако, весьма незначительно.

Производство цемента (2)

Цемент является одним из важнейших строительных материалов. Его применяют для изготовления бетонов, бетонных и железобетонных изделий, строительных растворов, асбестоцементных изделий. Изготовляют его на крупных механизированных и автоматизированных заводах. Цемент — это собирательное название группы гидравлических вяжущих веществ, представляет собой тонкоразмолотый минеральный порошок, способный при смешении с водой образовывать пластичную массу, с течением времени затвердевающую в камневидное тело. Главной составной частью цемента являются силикаты и алюминаты кальция, образовавшиеся при высокотемпературной обработке сырьевых материалов, доведенных до частичного или полного плавления.

В группу цемента входят все виды портландцемента, пуццоланового портландцемента, шлакопортландцемента, глиноземистый цемент, расширяющиеся цементы и некоторые другие.

В данной работе будет рассмотрена технология производства наиболее распространенного цемента — портландцемента.

Наиболее распространенный цемент, называемый портландцементом — это гидравлическое вяжущее вещество, твердеющее в воде и на воздухе.

Портландцемент получают путем обжига при высокой температуре (1400-1500°) природного сырья в виде мергелей или искусственной смеси известняка с глиной и другими материалами. Обжиг производится в специальных печах. Обычно цементообжигательная печь — это огромный, длиной 100-150 метров, горизонтально расположенный цилиндр, выложенный внутри огнеупорным кирпичом и медленно вращающийся. Печь устанавливается с наклоном; благодаря этому материалы в ней, пересыпаясь, постепенно передвигаются от одного конца к другому. При обжиге получается спекшийся материал, часть которого расплавилась и застыла в стекловидном состоянии. Этот материал носит название цементного клинкера. На рис. 1 показано строение цементного клинкера при небольшом увеличении. Из рисунка видно, что цементный клинкер состоит из кристаллических минералов, соединенных стекловидным веществом.

Рис. 1 Частица цементного клинкера в разрезе при увеличении в 100 раз

Портландцемент может выпускаться без добавок или с активными минеральными добавками в количестве до 15% от веса цемента. Добавки вводятся для придания цементу специальных свойств (пониженной водопотребности, повышенного воздухосодержания, гидрофобных свойств и т.д.).

Помимо портландцемента, выпускаются большие количества различных цементов, отличающихся составом сырья, из которого их получают, способом производства и свойствами. Советская цементная промышленность выпускает специальные цементы, предназначенные для особых условий службы бетона и специальных целей. Значительное количество разновидностей цементов получается на основе портландцементного клинкера путем добавки к нему различных веществ. В приведенной таблице 1 дается краткий перечень важнейших цементов с указанием их назначения, особенностей и области применения.

Читайте так же:
Сахар с цементом крыса

Табл. 1 Краткий перечень важнейших цементов с указанием их назначения, особенностей и области применения.

Чем тщательнее подобран состав сырья, чем лучше проведен процесс обжига и чем тоньше размолот цемент, тем выше его качества и тем большую прочность может он обеспечить при затворении его водой. Но более активный цемент всегда более чувствителен к действию влаги и углекислоты, содержащихся в воздухе, и при хранении быстрее теряет активность. Поэтому современные тонкомолотые высокоактивные цементы требуют тщательной упаковки, хранения и быстрого употребления в дело.

2. Сырьевые материалы, используемые для производства портландцемента

Сырьевые материалы, применяемые при производстве портландцемента, разделяются на две группы. К первой группе относятся материалы, предназначенные для получения клинкера, ко второй — материалы, добавляемые к клинкеру при помоле.

2.1. Сырьевые материалы для получения клинкера

Для получения портландцементного клинкера требуемого состава сырьевую смесь составляют из нескольких компонентов. Основные компоненты: известковый, состоящий преимущественно из углекислого кальция (карбонатная порода), и глинистый, содержащий большое количество кислотных окислов SiO 2 и А1 2 О 3 . В некоторых случаях, когда имеется возможность, два основных компонента заменяют одним мергелем, представляющим собой природную смесь глинистых веществ и СаСО 3 в необходимом для производства клинкера соотношении. Иногда вместо природного глинистого компонента используют отходы (шлаки, золы, нефелиновый шлам и др.) различных отраслей промышленности, имеющие подходящий состав.

Для регулирования содержания в смеси того или иного окисла в нее вводят корректирующие добавки. Если в сырьевой смеси недостает кремнезема, добавляют трепел, песок, опоку, диатомит и другие вещества с высоким содержанием SiO 2 ; при недостатке глинозема (А1 2 О 3 ) применяют бокситы, алюминиевые шлаки или глину с высоким содержанием А1 2 О 3 недостаток окиси железа компенсируют добавкой железной руды, колчеданных огарков, колошниковой пыли.

Пригодность сырьевых материалов для производства портландцементного клинкера устанавливают на основании их технологического изучения и технико-экономического анализа вопросов, вытекающих из организации цементного производства в данном районе (способ производства, вид топлива, качество цемента).

Карбонатные породы. Карбонатные породы образовались в основном из остатков животного мира, осевших на дне водоемов, а также из химических осадков углекислого кальция. Они встречаются в природе в виде известняков, мела, известнякового туфа, известняка-ракушечника и мрамора. Все разновидности карбонатных пород находят применение в производстве портландцемента, за исключением мрамора. Чаще всего используют известняки и мел, осадочное происхождение которых обусловливает разнообразие их химического состава и физических свойств.

Глинистые породы. Для цементного производства используют следующие виды этих пород: легкоплавкие глины, глинистый мергель, глинистый сланец, лёсс.

Глины представляют собой тонкодисперсные горные породы, легко распускающиеся в воде. Глины имеют разнообразный минералогический и гранулометрический состав даже в пределах одного месторождения. В тех случаях, когда глины содержат значительное количество грубых включений, обломков горных пород, их необходимо предварительно обогащать. Минералогический состав глин представлен различными гидроалюмосиликатами, из которых наиболее часто встречаются каолинит, монтмориллонит и гидрослюды. Обычно глины содержат в виде примеси кварцевый песок.

Мергели представляют собой природную смесь глинисто-песчаных веществ (20-50%) и мельчайших частиц углекислого кальция (50-80%). В зависимости от содержания СаСО 3 и глинисто-песчаного вещества мергели разделяются на песчаные, глинистые и известковистые.

Лёсс представляет собой пористую осадочную горную породу серо желтого цвета, близкую по химическому составу глинистым мергелям, но отличающуюся более грубо дисперсными частицами. Лёсс состоит в основном из частиц размером 0,1-0,5 мм; глинистые частицы (меньше 0,01 мм) содержатся в незначительном количестве, но в то же время в лёссе почти нет частиц песка с зернами крупнее 0,25 мм.

Глинистые сланцы относятся к породам метаморфическим (видоизмененным). Образовались они в результате видоизменения глин под действием большого давления, которое возникает при перемещении верхних слоев земной коры в более глубокие. По химическому составу глинистые сланцы подобны глинам, но отличаются от них физическими свойствами — они обладают высокой плотностью, прочностью и не размокают в воде.

Промышленные отходы. В качестве сырьевых компонентов на некоторых цементных заводах используются отходы различных отраслей промышленности. Наиболее широко применяют доменные шлаки и нефелиновый шлам, представляющий собой отход глиноземного производства. Нефелиновый шлам состоит из 80-85% тонкодисперсного частично гидратированного двухкальциевого силиката. Состав шлама доводят до состава портландцементной сырьевой смеси. Недостатками шлама являются повышенное содержание щелочей и необходимость использования двух корректирующих добавок для повышения содержания АО3 и Fe2O3 в сырьевой смеси.

Читайте так же:
Прейскурант ремонта цементной промышленности

Минерализаторы. Минерализаторами называются вещества, которые активно участвуют в образовании клинкерных минералов при обжиге и сами частично входят в их состав. При использовании минерализаторов повышается реакционная способность портландцементной сырьевой смеси и создаются благоприятные условия для образования двухкальциевого и трехкальциевого силикатов.

В качестве минерализаторов в цементной промышленности используют плавиковый шпат — флюорит (CaF2), кремнефтористый натрии (Na2SiFa6), апатит (Са5 /РО4/3F) , гипс, фосфогипс и другие.

Введение небольших количеств (0,5-1%) этих химических веществ в портландцементную сырьевую смесь способствует снижению требуемой температуры клинкерообразования, а соответствующим подбором этих соединений можно регулировать минералогический состав клинкера и, следовательно, свойства будущего цемента.

Основные сырьевые материалы для производства глиноземистого цемента

Глиноземистый цемент представляет собой быстротвердеющее гидравлическое вяжущее вещество, являющееся продуктом тонко­го измельчения обожженной до плавления или спекания сырьевой смеси, состоящей из бокситов и известняков и рассчитанной на пре­обладание в готовом продукте низкоосновных алюминатов каль­ция.

В настоящее время глиноземистый цемент производится во мно­гих странах разными методами и из различного сырья, вследствие чего химический состав его колеблется в очень широких пределах: 30-50% А12 O 3 ; 35-45% СаО; 5-15% SiO 2 ; 5-15% Fe 2 O 3 ; 1,5-2,5% Т iO 2 ; 0,5-1,5% MgO ; 0,1-1% SO 3 ; 0-1% ( Na 2 O + K 2 O ). Главными окислами являются А12 O 3 , СаО, SiO 2 и Fe 2 O 3 ; второсте­пенными, присутствующими в качестве примесей,— Т iO 2 , MgO и др.

Область глиноземистого цемента в системе СаО—А12 O 3 — SiO 2 располагается в поле кристаллизации однокальциевого алюмина­та (СА).

Влияние отдельных окислов на процесс спекания сырьевых смесей глиноземистого цемента может быть охарактеризовано следующим образом.

Оксид алюминия о беспечивает легкоплавкость сырьевой смеси и образование в цементе алюминатов кальция. Количество А12 O 3 в смеси не должно быть ниже 30-32%, так как в противном случае в цементе будут образовываться высокоосновные алюминаты кальция, ухудшающие его качество. Чрезмерное увеличение содержания А12 O 3 (сверх 45-50%) так же неблагоприятно вследствие образования в системе повышенного количества минералов СА­2 и CA 6 , которые характеризуются меньшей активностью, чем CA .

Оксид кальция является основным компонентом цемента, входящим в состав всех его основных минералов. В зависимости от содержания CaO глиноземистые цементы разделяются на две группы: высокоизвестковые, в которых содержание оксида кальция превышает 40%, и малоизвестковые, содержащие менее 40% оксида кальция. В цементах с высоким содержанием CaO наряду с основным минералом CA образется в том или ином количестве минерал C 5 A 3 , а в цементах с низким содержание CaO — минерал CA 2 .

Оксид железа в количестве 5—10% оказывает благоприятное влияние и на процесс минералообразования, и на свойства цемен­та; при содержании же Fe 2 O 3 в количествах, превышающих 10-15%, качество цемента снижается.

Оксид кремния в количестве 4—5% способствует более равномерному плавлению шихты, что ускоряет завершение процессов минералообразования. Однако увеличение содержания SiO 2 сверх 5-10% отрицательно влияет на качество цемента вследствие об­разования медленно гидратирующихся низкоосновных силикатов кальция и геленита.

Оксид магния в количестве 1-2% способствует ускорению протекания реакций минералообразования вследствие понижения температуры плавления и вязкости высокоглиноземистых расплавов. С увеличением содержания MgO сверх 2% возрастает количество А12 O 3 , связываемой в магнезиальную шпинель ( MgO — Al 2 O 3 ), что отрицательно сказывается на активности цемента. Поэтому стремятся к тому, чтобы содержание оксида магния в глиноземистом це­менте не превышало 2%.

Оксид титана TiO 2 содержится в глиноземистых цементах в количестве 1-3% в основном в виде минерала СаО·Т iO 2 (перовскита), не обладающего вяжущими свойствами. В небольших количе­ствах Т iO 2 можно считать нейтральной добавкой, но при увеличе­нии содержания этого окисла сверх 3% активность глиноземистого цемента понижается.

Оксиды калия и натрия снижают температуру плавления сырьевой смеси, но отрицательно влияют на качество цемента. Большая часть щелочных окислов входит в состав стекловидной фазу и об­разует твердые растворы с минералами цемента.

Оксид фосфора в небольшом количестве — до 1% не оказывает существенного влияния на свойства цемента, а при содержа­нии Р2 O 5 более 1 % прочность цемента снижается.

Оксид хрома даже в небольшом количестве отрицательно влия­ет на активность цемента.

источник: Ю.М. Бутт, В.В. Тимашев. Технология цемента. М.: Высшая школа, 1973 г.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector